

Bridging Gaps in Oncology

In collaboration with Mediterranean multidisciplinary Oncology forum (MMOF) | Hiroshima University Karmanos Cancer Institute (Wayne State University)

RICHTER's TRANSFORMATION

Prof. Antonio Cuneo, MD, PhD

Acknowledgment for advice and preparation of the slide deck Gianluca Gaidano, M.D., Ph.D.

DISCLOSURE Antonio Cuneo

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Gilead					x	х	
Janssen					х	x	
Roche					х	x	
Abbvie					x	x	
Sandoz					x		
Mundipharm a					х		
Novartis					х		
BMS					х		
Amgen						х	

The pathogenesis of CLL and prognostic biomarkers

Ag, antigen; β₂M, β2-microglobulin; BCR, B-cell receptor; BIRC3, baculoviral IAP repeat containing 3; IGHV, Ig heavy chain variable region; LPL, lipoproteinlipase; s, serum; SF3B1, splicing factor 3B subunit 1; TCL1, T cell leukaemia/lymphoma 1; TK, thymidine kinase; TP53, tumour protein 53; ZAP70, zeta-associated protein-70.

Definition of Richter syndrome

- Frequency of Richter syndrome
- Genetics of Richter syndrome
- Reasons for treatment failure in Richter syndrome
- Investigational treatment approaches for Richter syndrome

Definition of Richter syndrome

Müller-Hermelink HK, et al, WHO Classification 2008

DLBCL vs HL variants of Richter syndrome

Abruzzo et al, Am J Surg Pathol 2002; 26: 630-6 O'Brien et al, Cancer 2003; 98: 2657-663 Thornton et al, Leuk Res 2005; 29: 389-95 Ammatuna et al, Leuk Lymphoma 2009; 50:; 857-8 Kanzler et al, Blood 2000; 95:1023-31 Tsimberidou et al, Cancer 2006; 107: 1294-302 Rossi D, et al, Clin Cancer Res 2009; 115: 4415-22, Xiao et al, Hum Pathol 2016;55:108-16

Clinical clues of Richter transformation

Clinical suspicion of RS

- Bulky disease
- Extranodal involvement
- B symptoms
- High LDH

BIOPSY IS MANDATORY (PET-guided)

Lymph node biopsy

Differential diagnosis: prolymphocytoid evolution

PROLIFERATION CENTERS IN CLL CORRELATION WITH CYTOGENETIC AND CLINICOBIOLOGICAL FEATURES IN 183 CONSECUTIVE PATIENTS ANALYZED ON TISSUE MICROARRAYS

Ciccone M et AL, Leukemia. 2012 Mar;26(3):499-508

Sezione di Ematologia Azienda Ospedaliero-Universitaria di Ferrara

RESULTS (Histology): 183 cases undergoing lymph node biopsy for disease progression and LN size > 3 cm)

RESULTS (FISH) (ii)

Frequency of chromosome aberrations

101 cases 183 (hyerarchical) cases

ABNORMALITY	FREQUENCY			
17p-	17/101	15.6%		
11q-	20/101	24.7%		
14q32	16/101	30.8%		
+12	11/101	24.7%		
13q-	15/101	36.7%		

	<i>Typical (N°. of cases)</i>	PCs- rich (N°. of cases)	p value
Age (median)	63.9 (sd 10.4)	65.0 (sd 12.3)	Ns
Sex (F/M)	24/40	17/20	ns
Stage at biopsy (0-II / III-IV)	27/25	15/18	ns
17p- (No/Yes)	62/2	22/15	<0.001
11q- (No/Yes)	49/15	26/11	Ns
14q32 translocation (No/Yes)	50/14	18/19	0.002
+12 (No/Yes)	53/8	25/12	0.021
13q- (No/Yes)	35/29	27/10	ns
High-risk FISH (No/yes) (11q- and/or 17p-)	48/16	16/21	0.001

Figure 4

Survival by histology in patients with a full set of clinicobiologic data Survival by histology in the remaining patients

*Cox proportional-hazards analysis: PCs-rich pattern retained predictive value of poor outcome (HR 2.74, 95% CI 1.16–6.51, P=0.0022)

Ciccone M et AL, Leukemia. 2012 Mar;26(3):499-508

Criteria for differentiating DLBCL-type RS from histologically aggressive CLL have been proposed and include the occurrence of:

- i) large B-cells with nuclear size equal or larger than macrophage nuclei or more than twice a normal lymphocyte;
- ii) diffuse growth pattern of large cells (not just presence of small foci)

By applying these criteria, up to 20% of cases diagnosed as DLBCL-type RS would be more appropriately classified as histologically aggressive CLL

Soilleux EJ, Histopathology 2016

- Definition of Richter syndrome
- Frequency of Richter syndrome
- Genetics of Richter syndrome
- Reasons for treatment failure in Richter syndrome
- Investigational treatment approaches for Richter syndrome

Cumulative incidence of Richter syndrome "then"

Years from CLL diagnosis/treatment to DLBCL

Parikh et al Br J Haematol 2013

Incidence of Richter syndrome "now"

Reference	Total pts	otal pts Study population Treatment		Pts that developed RS	RS prevalence
Burger, 2015	186	Treatment naive	Ibrutinib	0	0%
Byrd, 2014	391	Relapsed	Ibrutinib	4	1%
O'Brien, 2014	29	Treatment naive	Ibrutinib	1	3%
Jain, 2015	127	Relapsed/Refractory	Ibrutinib	7	5%
Farooqui, 2015	51	17p deleted	Ibrutinib	3	6%
Mato, 2016	178	BCRi treated	Ibrutinib, idelalisib	13	7%
Byrd, 2013	85	Relapsed/Refractory	Ibrutinib	7	8%
Seymour, 2017	49	Relapsed/refractory	Venetoclax- rituximab	5	12%
Roberts, 2015	116	Relapsed/Refractory	Venetoclax	18	16%
Seymour, 2017	49	Relapsed/refractory	Venetoclax- rituximab	5	12%
Strati, 2014	63	17p deleted	Heterogeneous	15	23%

Heterogeneity conceivably due to: case mix, 1° line vs R/R, observation time

Richter syndrome in R/R CLL treated with novel agents is an early event

In all datasets of R/R CLL treated with novel agents (BCRi, Venetoclax), emergence of Richter syndrome is an early event, suggesting expansion of a clone that had been previously selected by chemotherapy

- Definition of Richter syndrome
- Frequency of Richter syndrome
- Genetics of Richter syndrome
- Reasons for treatment failure in Richter syndrome
- Investigational treatment approaches for Richter syndrome

The genetic lesions of Richter syndrome are detectable at subclonal levels in the initial CLL clone

Fabbri G, et al, J Exp Med 2011; 208:1389-401; Rossi D, et al. Blood 2012; 119: 521-9

High frequency of stereotyped HCDR3s in Richter syndrome

¹Murray et al, Blood 2008

Richter syndrome show biased usage of the BCR in the subset 8 (*IGHV4-39*) configuration

- BCR from subset 8 CLL display extreme antigen polyreactivity
- Subset 8 CLL clones respond avidly to stimulation by multiple antigens

Rossi D, et al, Clin Cancer Res 2009; 15: 4415-22 **Chu**, et al, Blood 2011; 117:2227-36 **Rossi D**, et al, Blood 2013; 121: 4902-5 **Gounari M**. et al, Blood 2015: 125: 3580-7

The genetic profile of Richter sydrome differs from that of *de novo* DLBCL

Rossi D, et al. Blood 2011; 117: 3391-401 Fabbri G, et al. J Exp Med 2011; 208:1389-401 Fabbri G, et al. J Exp Med 2013; 210: 2273-88 Chirginova et al. Blood 2013; 122: 2673-82 Monti, et al. Hematol Oncol 2014; 32: 155-7

TP53 abnormalities in Richter syndrome

Döhner H, et al. New Engl J Med 2000;343:1910–6; Rasi S, et al. Haematologica 2012;97:153–4; Zainuddin N, et al. Leuk Res 2011;35:272–4; Zenz T, et al J Clin Oncol 2010;28:4473–9; Rossi D, et al. Blood 2011;117:3391–401; Stilgenbauer S, et al. Blood 2014;123:3247–54; Fabbri G, et al. J Exp Med 2013;210:2273-88

MYC abnormalities in Richter syndrome

CDKN2A/B abnormalities in Richter syndrome

NOTCH1 mutations in Richter syndrome

Arruga, et al. Leukemia 2013

Fabbri G, et al, J Exp Med 2011; 208:1389-401 Puente X, et al. Nature 2011; 475: 101-5 Rossi D, et al. Blood 2012; 119: 521-9 Rasi S, et al. Haematologica 2012; 97: 153-4 Fabbri G et al, J Exp Med 2013; 210: 2273-88

Proliferation and apoptosis are the master cellular programs deregulated in Richter syndrome

The genetic profile of clonally unrelated RS differs from that of clonally related RS

Unrelated Related

Rossi et al, Blood 2011

BTK and PLCG2 mutations in Richter syndrome developing under Ibrutinib

Kadri et al, Blood Adv 2017

- Definition of Richter syndrome
- Frequency of Richter syndrome
- Genetics of Richter syndrome
- Reasons for treatment failure in Richter syndrome
- Investigational treatment approaches for Richter syndrome

Reasons for treatment failure in Richter syndrome

Overall survival of Richter syndrome by histology

Mauro et al, Leukemia 2014

Figure 2. PFS and OS by discontinuation reason. (A-B) PFS and OS of patients after KI discontinuation, stratified by reason for discontinuation.

Chemo(immuno)-therapy approaches other than R-CHOP in in Richter syndrome

Post remission SCT is a potentially curative approach for **Richter syndrome (EBMT)**

Cwynarski et al, JCO 2012

Molecular diagnosis for the clinical management of RS

- Definition of Richter syndrome
- Frequency of Richter syndrome
- Genetics of Richter syndrome
- Reasons for treatment failure in Richter syndrome
- Investigational treatment approaches for Richter syndrome

CHOP in combination with ofatumumab in induction and maintenance in newly diagnosed Richter syndrome

- CHOP-O with ofatumumab maintenance provides minimal benefit over CHOP plus rutuximab.
- Standard immunochemotherapy for RS remains wholly inadequate for unselected RS.

Pembrolizumab in Richter syndrome

Table 3. Clinical Activity of Pembrolizumab in Trial Patients.						
Response	RT (n=9)	CLL (n=16)	Total (n=25)			
Complete Response – no. (%)	1 (11)	0	1 (4)			
Partial Response – no. (%)	2 (22)	0	2 (8)			
Partial Metabolic Response – no. (%)	1 (11)	0	1 (4)			
Stable Disease – no. (%)	4 (44)	5 (31)	9 (36)			
Progressive Disease [#] no. (%)	1 (11)	8 (50)	9 (36)			
Could not be evaluated* no. (%)	0	3 (19)	3 (12)			
Overall Response Rate % (95% CI)	44 (14 - 79)	0	16 (5 - 36)			
Median PFS in months (95% CI)	5.4 (2.8 to 12.2)	2.4 (1.2 to 3.3)	3.0 (2.1 to 5.4)			
Median OS in months (95% CI)	10.7 (4.4 - NR)	11.2 (2.8 - NR)	10.7 (4.4 - NR)			

Ding et al, Blood 2017

Baseline to Best Response, Richters Patients

- Pembrolizumab exhibits selective activity in CLL patients with RT
- Active after Ibrutinib exposure
- Higher levels of PD-L1 in pts with confirmed responses

Reference	Study design	Patients	RS type	Regimen	ORR	CR	PFS/FFS
Kuruvilla 2014	Clinical trial	6	DLBCL	Selinexor	33%	0%	na
Hillmen, 2016	Clinical trial	29	DLBCL	Acalabrutinib	38%	14%	3 months
Tsang, 2016	Retrospective	4	DLBCL	Ibrutinib	75%	25%	na
Ding, 2016	Clinical trial	9	DLBCL	Pembrolizumab	44%	11%	na
Davids, 2017	Clinical trial	7	DLBCL	Venetoclax	43%	0%	na

- venetoclax combination with dose-adjusted EPOCH-R (NCT03054896)
- ibrutinib and obinutuzumab alone or in combination with CHOP (NCT03145480)
- pembrolizumab alone (NCT02576990) or in combination with ublituximab (NCT02535286)
- nivolumab in combination with ibrutinib (NCT02420912)
- blinatumumab monotherapy (NCT03121534)

- The genotype of Richter syndrome sustains the clinical aggressiveness and chemorefractoriness of the disease
- A molecular workup to distinguish clonally related vs clonally unrelated cases may be useful
- In R/R CLL treated with BCR and BCL2 inhibitors, development of Richter syndrome occurs early and may reflect an aggressive clone selected by previous chemotherapy
- The outcome of Richter syndrome is still very poor and mandates the investigation of new treatment modalities
- The incidence, biology and clinical behavior of Richter syndrome in patients receiving only chemo-free regimens need to be defined